
Exploiting OpenBSD
Ben Hawkes

ben@suresec.com.au

2

Introduction

• Stack Smashing Protection (SSP/ProPolice)

• Address Space Layout Randomization (ASLR)

• OpenBSD’s custom memory allocator

• Some other points of interest

Note: this presentation is primarily focused on the
i386 port of OpenBSD 3.9

3

SSP/ProPolice

Stack Smashing Protector adopted by OpenBSD
to provide stack frame canaries

SSP also rearranges stack frame to mitigate
linear overflow damage

Canary is usually 32-bit long random number
(arc4random in OpenBSD)

4

Classic Stack Frame Layout

SSP/ProPolice

Local variables

Saved frame pointer

Saved return pointer

Function arguments

Low address

5

SSP/ProPolice

SSP Stack Frame Layout

Local variables

Unused arguments

Saved return address

Saved frame address

Character buffers

Copy of arguments

Canary value

Low address

6

In order to overflow return address, must have
knowledge of canary

Canary is created at runtime by libc constructor
function (__guard_setup)

Canary is randomized whenever libc is loaded

Effectively every time execve() is used, but
significantly not when fork() is used

SSP/ProPolice

7

How can attacker “hit” the right canary value?

One method is to find an information leak in same
application as overflow

Arbitrary read on stack or binary’s data section
may give attacker knowledge of canary value

Only possible when leak and overflow both occur
before libc is reloaded

How to identify canary value? Kolmogorov
complexity, address space heuristics, or both

SSP/ProPolice

8

Finding a useable information leak is unlikely

Need a more generic technique

Perhaps the most generic technique is brute force

But… 2^32 = 4 billion different canary values

Which gives an average of 2 billion attempts
before success

Not feasible to do this remotely, barely possible to
do locally

SSP/ProPolice

9

Introducing “byte for byte” brute forcing

Some vulnerabilities can be brute forced in an
average of 512 attempts

Only possible when canary stays same between
crashes (i.e. forking daemon)

And only when the overflow is not null terminated
(potentially from read, memcpy, strncpy, loops)

Technique is to brute force each byte of the
canary individually along with time analysis

SSP/ProPolice

10

C1 C2 C3 C4

Cn = 4 canary bytes (total 32-bit, dword)
B = buffer bytes (assuming no padding)

BBBBB…

SSP/ProPolice

11

X1 C2 C3 C4AAAAA…

A = buffer overflow padding
X1 = brute force byte, from 0 to 255

SSP/ProPolice

12

How can you tell when the brute force byte equals
the canary byte?

Use a type of timing attack

When brute force value is wrong, the process will
exit when the function returns

When brute force value is right, the process will
be allowed to return, and continue executing for
some further period of time

In general, incorrect guesses fail fast, correct
guesses fail slow

SSP/ProPolice

13

X1 X2 C3 C4AAAAA…

A = buffer overflow padding
X1 = C1, the first canary byte
X2 = brute force byte, from 0 to 255

SSP/ProPolice

14

X1 X2 X3 C4AAAAA…

A = buffer overflow padding
X1 = C1, the first canary byte
X2 = C2, the second canary byte
X3 = brute force byte, from 0 to 255

SSP/ProPolice

15

X1 X2 X3 X4AAAAA…

A = buffer overflow padding
X1 = C1, the first canary byte
X2 = C2, the second canary byte
X3 = C3, the third canary byte
X4 = brute force byte, from 0 to 255

SSP/ProPolice

16

At the end of this process, each individual byte of
the canary is known

Allows the exploit to overwrite the saved return
address while still having a valid canary

Each byte takes at most 256 attempts, giving a
maximum 1024 attempts for whole canary

This equates to an average 128 attempts per
byte, or 512 attempts for whole canary

SSP/ProPolice

17

It would be better is if there was no canary at all

RJohnson and Silberman found that SSP does
not guard character buffers of size less than 8

Also doesn’t guard against arrays of type other
than char, such as integer and pointer arrays

Case and point: Mark Dowd’s Apache
mod_rewrite bug was not prevented by SSP

SSP/ProPolice

18

Also very little SSP can do to guard buffers inside
of a structure

Can’t rearrange structure fields, so may be able
to exploit adjacent pointers etc.

But it does rearrange the structure itself (when
containing a character buffer)

So in some cases it is possible to overflow the
entire structure when a buffer is rearranged to
lower address than structure

SSP/ProPolice

19

In original stack canary implementations,
argument pointers could be overflowed

SSP copies the arguments to below the buffers

But what if the argument points to somewhere
above the buffers?

Used when argument is for both input and output
(common with structures and length variables)

Potentially exploitable in various application
specific ways, by controlling input/output values at
the place pointed to by the argument

SSP/ProPolice

20

Address Space Layout Randomization (ASLR)
used to obfuscate address space by adding
entropy to base address of page mappings

Designed to make stable exploit development
difficult: helps prevent arbitrary stack/heap
overwrites, ret-to-libc etc.

OpenBSD randomizes much of its address space:
library text and data segments, signal trampoline,
mmap, stack

ASLR

21

However, parts of the address space are not
randomized

Specifically, application executable’s text, data
and BSS segments are all mapped to static
locations

The text segment includes all application code,
but also Procedure Linkage Table (PLT)

The data/BSS segments contain global variables

ASLR

22

0be82000-0be8a000 r-xp /usr/libexec/ld.so
0eb28000-0eb29000 r-xs
0fe66000-0fee8000 r-xp /usr/lib/libc.so.39.2
1c000000-1c001000 r-xp /root/aslr
2be82000-2be83000 r--p /usr/libexec/ld.so
2be83000-2be84000 rw-p
2be84000-2be85000 r--p
2be85000-2be87000 rw-p
2fe66000-2fe73000 r--p /usr/lib/libc.so.39.2
2fe73000-2fe76000 rw-p /usr/lib/libc.so.39.2
2fe76000-2fe78000 r--p /usr/lib/libc.so.39.2
2fe78000-2fe79000 rw-p /usr/lib/libc.so.39.2
2fe79000-2fe97000 rw-p
3c000000-3c001000 r--p /root/aslr
3c001000-3c002000 rw-p
3c002000-3c003000 r--p
3c003000-3c004000 rw-p
84981000-84982000 rw-p
854c9000-854ca000 r--p /var/run/ld.so.hints
86d90000-86d91000 r--p
cd800000-cf000000 ---p
cf000000-cf7e0000 rw-p
cf7e0000-cf7f0000 rw-p
cf7f0000-cf800000 rw-p

05d2c000-05d2d000 r-xs
09bff000-09c07000 r-xp /usr/libexec/ld.so
0eb46000-0ebc8000 r-xp /usr/lib/libc.so.39.2
1c000000-1c001000 r-xp /root/aslr
29bff000-29c00000 r--p /usr/libexec/ld.so
29c00000-29c01000 rw-p
29c01000-29c02000 r--p
29c02000-29c04000 rw-p
2eb46000-2eb53000 r--p /usr/lib/libc.so.39.2
2eb53000-2eb56000 rw-p /usr/lib/libc.so.39.2
2eb56000-2eb58000 r--p /usr/lib/libc.so.39.2
2eb58000-2eb59000 rw-p /usr/lib/libc.so.39.2
2eb59000-2eb77000 rw-p
3c000000-3c001000 r--p /root/aslr
3c001000-3c002000 rw-p
3c002000-3c003000 r--p
3c003000-3c004000 rw-p
7d99c000-7d99d000 r--p /var/run/ld.so.hints
7dbea000-7dbeb000 r--p
7e78a000-7e78b000 rw-p
cd800000-cf000000 ---p
cf000000-cf7d0000 rw-p
cf7d0000-cf7e0000 rw-p
cf7e0000-cf800000 rw-p

One binary executed twice

ASLR

23

Note that the Global Offset Table (GOT) is read
only

But if an attacker can get arbitrary overwrite (via
pointer or malloc chunk overwrite) then the
data/BSS segments can still be used

Most applications have at least one interesting
global

Similarly, arbitrary code execution may be
leveraged through ret-to-text or ret-to-plt

ASLR

24

Other techniques can be used to find randomized
mappings (i.e. libc, heap)

The most obvious being brute force

OpenBSD does most of its randomization in
uvm_map_hint()

Effectively gives 16 bits of entropy to both code
and data pages (i386)

The stack is randomized elsewhere, using a
“stack gap” (pages are static, stack top is not)

ASLR

25

It is not unreasonable to suggest brute forcing 16
bits of entropy

Gives an average of 32768 attempts (65536 max)

Locally, brute force by fixing a static address and
waiting for the page to get randomized there

Forking daemon, keep trying different pages until
the right one is hit…

However, not feasible if each attempt requires too
much traffic (i.e. 512mb upload from 16kb per
attempt)

ASLR

26

Introducing “data access brute forcing”

Some times a randomized mapping can be brute
forced remotely in ~500 attempts, a decrease by
a factor of about 100

Applicable against forking daemons (or potentially
threaded apps depending on how they fail)

Still conceptual though, only really thought about
this a few days ago

ASLR

27

The idea is similar to byte for byte brute forcing
for SSP, relies on a timing attack

Traditional brute force against ASLR has worked
by “code accesses” (i.e. ret, indirect call)

But mappings can also be discovered by
read/write operations (read is easier)

Assume you control a pointer, and that the pointer
is about to be used for a read operation

Also assume you want to find the libc text
segment base

ASLR

28

If the pointer reads an invalid page, the process
will usually fail immediately

However, a valid page will result in a successful
(although nonsensical) read operation

The data will be passed back to the application,
and execution continues

So successful read operations fail slower than
non-successful reads

ASLR

29

Code access brute forcing increases page by
page each attempt, using static offset in to page
(i.e. offset to sleep())

But a read access can use increments of target’s
text segment size

It doesn’t matter what gets read (although some
successful reads may fail slower than others)

Once one mapping succeeds, test all other
adjacent pages (forward and back)

This gives the start of the mapping, and the size
of the mapping

ASLR

30

If this is possible, the numbers on OpenBSD look
good:

0fe66000-0fee8000 r-xp /usr/lib/libc.so.39.2

(0xfee8000 – 0xfe66000) / 4096 = 0x82 (130)

(65536 / 130) + 130 = 635

So it takes at most 635 attempts to find libc (this
figure would go up slightly if there was more than
one mapping in the tested range)

ASLR

31

On OpenBSD it’s also possible to use this
technique with a write operation

Abuse the fact that the text/data segments are
mirrored, with a static difference of 512mb

Find the libc data/bss segments and start
subtracting

Not as efficient as using read because data/bss
segments are smaller, so need smaller increment

ASLR

32

Information leaks can help find an SSP canary,
but can also help map randomized address space

Depends on application specific heuristics (need
to leak known lib function addresses, variable
pointers etc)

Also, partial overwrites can be extremely useful
as the low 12 bits of any randomized address is
not randomized

Allows ret-to-near, tricks with pointers, and is
helpful with some malloc stuff

ASLR

33

OpenBSD has designed a custom memory
allocator, designed for security

No in-band chunk headers

Completely mmap() based, which means each
allocated page is randomized

Optional support for various other improvements
such as guard pages, pointer protection, junk fills

Malloc

34

There are 5 important parts to OpenBSD malloc:

• The page directory structure, pdinfo

• The page directories

• The chunk page structure, pginfo

• The chunk pages

• The free page structure, pgfree

Malloc

35

Malloc

pdinfopage_dir

base next

OpenBSD malloc (roughly)

…

pginfo
next

…n-bucket

size n

page

pgfreepage next

36

Some generic techniques can be used to
leverage overflows involving malloc

Most obvious is to simply overflow application
specific data in an adjacent chunk

This is likely to be the most common technique,
already used in some exploits (linux)

An attacker needs to position overflowed chunk to
be before “target” structure

Mostly looking to overwrite function pointers, but
each application is different

Malloc

37

There is also a generic technique involving
arbitrary free()’s

Based on the “Spirit” attack described in “Malloc
Maleficarum”

Instead of leveraging the malloc implementation,
leverage the application itself

Assume you control the value of a pointer as it
gets passed to free()

Malloc

38

Point the overflowed pointer to an existing chunk
that contains an interesting structure and free it

By default, OpenBSD leaves freed memory intact

The application still thinks the chunk is allocated

If chunks of the same size are allocated,
eventually the “in use but free” chunk will be
allocated

If the attacker controls the use of this chunk, then
the attacker controls the interesting structure

Malloc

39

Note that all chunks in one page are equally sized

So when partially overflowing a malloc pointer of
a known size, every multiple of that size is
guaranteed to be a chunk

Knowing this could often simplify the application
of this technique

Credit goes to Mark Dowd for noticing this

This is complicated by the ‘J’ and ‘F’ options in
OpenBSD malloc’s option file, but neither are
enabled by default

Malloc

40

Real aim of “Exploiting Malloc” is to control heap
structures which in turn allows you to control
arbitrary memory

On OpenBSD this should be theoretically
impossible, since there are no in-band heap
structures

But this isn’t strictly true, since the allocator often
uses malloc itself to allocate room for those
structures

Also, there are no guard pages by default…

Malloc

41

Consider the pginfo structure, used to describe a
page of equally sized chunk fragments

For smaller buckets (< 32 bytes), pginfo is located
at the start of the page of chunks

Which is fine if you ignore the possibility of a
buffer underflow

But for buckets of any other size, pginfo is
allocated using imalloc…

Malloc

42

struct pginfo *bp
...
pp = malloc_pages((size_t) malloc_pagesize);
...
if (bits != 0 && (1UL << (bits)) <= l + l) {

bp = (struct pginfo *) pp;
} else {

bp = (struct pginfo *) imalloc(l);
if (bp == NULL) {

ifree(pp);
return (0);

}
}

Malloc

malloc_make_chunks

43

Malloc

So whenever a new bucket page is created, its
pginfo structure is placed into the bucket for
chunks between 17 and 32 bytes in length

An attacker who can overflow a similar sized
chunk that was allocated prior to new bucket
page’s creation can control the pginfo structure

Can do this by forcing the application to allocate a
lot of similar sized chunks after overflow chunk
has been allocated

44

Malloc

The next step is to turn the control of a pginfo
structure into the control of arbitrary memory

You can do this by controlling the value returned
from a call to malloc, from there it’s easy

This can be achieved by supplying an arbitrary
value for the “page” element:

struct pginfo {
struct pginfo *next; /* next on the free list */
void *page; /* Pointer to the page */
u_short size; /* size of this page's chunks */
u_short shift; /* How far to shift for this size chunks */
u_short free; /* How many free chunks */
u_short total; /* How many chunk */
u_long bits[1];/* Which chunks are free */

};

45

Malloc

The malloc_bytes() function uses the page
element as a base after calculating an offset to
the next free chunk

return ((u_char *) bp->page + k);

This can be triggered by causing an allocation of
a chunk with appropriate size

Depending on which pginfo is controlled, multiple
allocations may be required

The next pointer is not dereferenced here and
can be safely mangled

46

Malloc

Also possible with a round about way through free
then malloc

Overwrite only the next pointer, or overwrite entire
pginfo but with null bytes for a sensible shift

Cause a free on all chunks in the page, or fake
the “free” and “total” values in the pginfo

This triggers page free code, with sets the
page_dir entry for this bucket to the next value
from pginfo

47

Malloc

Point the overflown pginfo next value to a fake
pginfo structure.

Then trigger a malloc for that bucket size

Bits field must be non-zero

But otherwise apply the same technique as for a
straight malloc

This should only be used when necessary, the
straight malloc way is much better

48

Malloc

The pgfree structure is used to describe a series
of adjacent free pages

Similarly to pginfo, pgfree is allocated internally
using imalloc
static struct pgfree *px;
...
if (px == NULL && (px = malloc_bytes(sizeof *px)) == NULL)

goto not_return;

Allocated whenever a page becomes free

Which means an overflow in the 32 byte
bucket can also smash pgfree structures

49

Malloc

Exploiting pgfree is more complicated than pginfo,
goal is still to return arbitrary value from malloc

When a pgfree structure is in use, it is stored in
the free_list linked list

The malloc_pages() function traverses this list
until it finds a page that matches the request

struct pgfree {
struct pgfree *next; /* next run of free pages */
struct pgfree *prev; /* prev run of free pages */

void *page; /* pointer to free pages */
void *pdir; /* pointer to the base page's dir */
size_t size; /* number of bytes free */

};

50

Malloc

If the attacker supplies an arbitrary value for the
“page” element of the pgfree structure, this will be
returned when the cached page is reused

The only complication is that the next and prev
pointers are dereferenced for a write operation

So the first to dwords in the structure must point
to valid writable memory

There is actually an unlink condition here, but
non-executable pages usually makes this
redundant, as the “retloc” page must be both
writable and executable… W^X!

51

Malloc

Something important to note is that there are no
guard pages by default

Normally this is not an issue, since page
mappings are randomized and will mostly not be
adjacent

But they are only randomized with a set amount
of entropy

So leaking 128mb (average) will result in a whole
lot of adjacent pages, which can potentially
enable overflow’s into page directory pages

Then forge pginfo structure, arbitrary malloc

52

Other

Kernel space bugs have become popular over the
last few years

OpenBSD kernel is just as soft a target as most
other operating systems

Also a mention should be given to the W^X LDT
bug fixed earlier this year

Future exploitation research should also consider
chroot jails, non-executable pages

There was just not enough time

53

Questions?

Q

