
RUXCON 2004

Ollie Whitehouse

July, 2004

© 2 0 0 4 @ S T A K E , I N C .

Agenda

Overview of Bluetooth security

Brief summary of attacks to date

Introduction to new attacks

Hunting Bluetooth

Tool: RedFang 3.0

Tool: RedSnarf 1.0

Tool: BlueFang 1.0

Miscellaneous product research

Continued research

Questions

© 2 0 0 4 @ S T A K E , I N C .

Overview of Bluetooth security

Bluetooth Security 101

How it works (Mode 3)

Some interesting quotes from the specifications

© 2 0 0 4 @ S T A K E , I N C .

Overview: Bluetooth security 101

Mode 1: No Security

– Implemented in some cases on Bluetooth access points running PAN
profiles

Mode 2: Application/Service based

– Example: PPP authentication used on certain Bluetooth access points

Mode 3: Link-layer (PIN authentication / MAC address
security / encryption)

– This is the bonding process as well as Bluetooth encryption as specified by
the Bluetooth SIG

© 2 0 0 4 @ S T A K E , I N C .

Overview: How it works (Mode 3)

Link keys are the keys to Kingdom, many different types
– Kinit – Initialization key

Used to protect the transfer of initialization parameters

– Ka – Unit key

Generated in a single device: “The unit key shall be generated once at installation
of device”

– Kab – Combination key

Combination of two Ka’s and some algorithm magic

– Kmaster – Temporary key

A temporary replacement for the current link key. Can be used to communicate with
more than one device with the same encryption key

Other Keys
– Kc – Encryption key

© 2 0 0 4 @ S T A K E , I N C .

Overview: How it works (Mode 3)

PINS are the pre-shared secret used as a basis for authentication
and seeding certain parts of Kinit

– According to the specification static PIN’s can be used on devices where no user-
interface exists (examples here are Bluetooth headsets)

– If no PIN then ‘0’ is used which is actual fact 0x00 (i.e. NULL)

– Can be between 1 and 16 bytes (0-9) in length, typically only numeric this results in
10,000,000,000,000,000 (10^16) maximum possible PIN’s.

– If we take the average PIN length of 6 bytes (0-9) we end up with 1,000,000 possible
PIN’s (10^6)

A number of equations are used are different stages (spec defined)
– E22 – SAFER+ which produces Kinit / E21 similar but produces Kmaster

– E0 – SAFER+ which produces K’c

– E1 – SAFER+ which handles authentication

– E2 – SAFER+ used for auth key generation

– E3 – SAFER+ which produces Kc

© 2 0 0 4 @ S T A K E , I N C .

Overview: How it works (Mode 3)

Kinit
– Generated from:

Bluetooth address (48 bits)

RAND (128 bits)

PIN could be between 8 and 128 bits & PIN Length (8 bits)

Ka (Unit Key)
– Generated from:

Bluetooth address (48 bits)

RAND (128 bits)

Kab (Combination Key)
– Generated from:

XOR’ing two Unit Key’s

© 2 0 0 4 @ S T A K E , I N C .

Overview: How it works (Mode 3)

Kc

– Typically generated from:

COF (which is the result of two Bluetooth address (48 bits) XOR’d & ACO which is
an additional result of the ‘Authentication’ to SRES) – 96bits total

RANDOM (128bit)

Kab (128bit Link-Key)

K’c & Kcipher

– Generated from:

Kc

Bluetooth Address of master device (BD_ADDRa)

Master clock

© 2 0 0 4 @ S T A K E , I N C .

Overview: How it works (Mode 3)

Generation of
Kinit

Generation of Kab
(Using Kinit)

Link key exchange

Authentication

Generation of Kc
(optional)

We can attack
using information

obtained from
three locations if
we can observe

the entire
intilization session

© 2 0 0 4 @ S T A K E , I N C .

Overview: Interesting observations

Encryption key size is factory preset

– Currently very little, if any, product documentation includes details on
encryption key sizes used (could be between 8 to 128 bits)

Repeated PIN attacks should incur ever increasing delays
between allowed tries

– No documentation on when this should be reset

© 2 0 0 4 @ S T A K E , I N C .

Brief summary of attacks to date

Finding non-discoverable devices

– RedFang (single then multi threaded)

PSM scanning

– Port scanning for Bluetooth

OBEX attacks - PUSH

– Blue Jacking

OBEX attacks – PULL

– Blue Stumbling

© 2 0 0 4 @ S T A K E , I N C .

Existing attacks: Non-discoverable devices

Idea conceived by @stake
– http://www.atstake.com/research/tools/info_gathering/

Principle:
– Bluetooth supports the concept of discoverable and non-discoverable

– Bluetooth (BD_ADDR) addresses are 6 bytes and very similar in nature and
purpose to MAC addresses

– 3 bytes are for vendor assigned ranges, and 3 being specific to the device in
that range

– If we brute force the ranges and do a name inquiry we can discover non-
discoverable devices

Impact:
– Non-discoverable Bluetooth devices can be found

© 2 0 0 4 @ S T A K E , I N C .

Existing attacks: PSM Scanning

Idea conceived by Collin Mulliner

– http://www.betaversion.net/btdsd/

Principle:

– Works on the idea that not all PSM (Protocol/Service Multiplexer) ports are
registered with the local SDP (Service Discovery Protocol)

– So if we bypass the SDP database and try and connect to PSM’s
sequentially we may locate hidden functionality

Impact:

– No PSM’s found to-date that offer other than advertised services

– Idea could be used to create a ‘knock’ style backdoor for Bluetooth devices

© 2 0 0 4 @ S T A K E , I N C .

Existing attacks: OBEX - PUSH

Idea conceived by bluejackQ team

– http://www.bluejackq.com/

Principle:

– OBEX allows you to PUSH items anonymously in some cases between
devices

– Can be in a number of formats (i.e. vCards or pictures)

Impact:

– Annoying, no real security impact

– Possible extensions to this idea is around sending vCard’s with common
names such as ‘Home’ or ‘Work’ in an attempt to overwrite an existing
phone book entry in the recipients cell/smart phone

© 2 0 0 4 @ S T A K E , I N C .

Existing attacks: OBEX - PULL

Idea conceived by Bruce Potter, Adam Laurie & Ben Laurie
– http://www.bluestumbler.org/

– http://www.shmoo.com/~gdead/dc-11-brucepotter.ppt

Principle:
– OBEX allows you to PULL items anonymously in some cases between

devices

Impact:
– A number of Nokia, Ericsson & Sony Ericsson handsets are susceptible

– Very much dependant on vendor’s implementation of OBEX/Bluetooth stack

– Information obtainable can include calendar, real time clock, business card,
properties, change log, IMEI

– CBIT paper showed what you could get up to

© 2 0 0 4 @ S T A K E , I N C .

Introduction to new attacks

Based on analysis of newest 1.2 specification

– Older versions may have other vulnerabilities not covered (i.e. 1.0 and 1.1)

Purpose

Off-line PIN (via Kinit) recovery

On-line PIN cracking

Off-line encryption key (via Kc) recovery

Impact & Counter measures

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Purpose

Recover the PIN used to authenticate the device

Recover the temporary key (Kinit) used to protect the
combination link key (Kab) inputs

Recover the link key which is used to produce encryption
key (Kc)

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Off-line PIN (via Kinit) recovery

We sniff* the initial ‘RAND’ transfer between two devices
which occurs in clear-text (effectively the first stage of the
bond)

We sniff the XOR’d ‘RAND’(s) used for LinkKey generation

We sniff the AUTH RAND and AUTH SRES which both occur
in clear-text (the last stage of the bond)

We do some number crunching and have enough data in
order to be able to recover the PIN, LinkKey and all inputs
used for both

* We need to sync the frequency hopping or capture entire 2.4ghz
spectrum and do off-line

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Off-line PIN (via Kinit) recovery
Kinit = E22

(IN_RAND, PIN,
PINL)

Kinit = E22
(IN_RAND, PIN,

PINL)

Device A Device B

IN_RAND
(Clear Text)

Ca = LK_RANDa
XOR Kinit

Cb = LK_RANDb
XOR Kinit

Ca

Cb

LK_RANDb = Cb
XOR Kinit

LK_RANDa = Ca
XOR Kinit

LK_LKa =
E21(LK_RANDa,

BDADDRb)
-&-

LK_LKb =
E21(LK_RANDb,

BDADDRb)

LK_LKb =
E21(LK_RANDb,

BDADDRb)
-&-

LK_LKa =
E21(LK_RANDa,

BDADDRb)

Kab = LK_Ka
XOR LK_Kb

Kba = LK_Kb
XOR LK_Ka

SRES =
E1(AU_RANDa,

BD_ADDRb, Kab)

SRES =
E1(AU_RANDa,

BD_ADDRb, Kab)

AU_RANDa
(Clear Text)

SRES

KinitCrack = E22 (
IN_RAND
B_PIN(n),

B_PINL(n))

CLK_RANDa = Ca
XOR KinitCrack

-&-
CLK_RANDb = Cb

XOR KinitCrack

CLK_LKa =
E21(CLK_RANDa,

BDADDRb)
-&-

CLK_LKb =
E21(CLK_RANDb,

BDADDRb)
-&-

CKab = CLK_Kb
XOR CLK_Ka

SRES =
E1(AU_RANDa,

BD_ADDRb,
CKab)

Repeat for each
PIN until our
calculated

SRES equals
the observered.

The result is we
have the

LinkKey & the
PIN

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Off-line PIN (via Kinit) recovery

So in summary

– We need to sniff the bonding process between two devices

This can-not be done with off the shelf consumer equipment

– We need to perform 3 iterations of SAFER+ and 3 XOR’s for each crack
cycle

– Assuming we can perform 80,000 crack cycles (3 SAFER+’s and 3 XORs) a
second* that gives us 12.5 seconds to recover the key for a 6 digit PIN or
1,446,759 days for a 16 digit PIN on a single CPU

* Using a Pentium III 850mhz machine using libmcrypt

© 2 0 0 4 @ S T A K E , I N C .

New attacks: On-line PIN cracking

Attack possible is fixed PIN exists in device (i.e. same PIN is
used for every connecting device)

– We change our Bluetooth address each time and try a PIN

– Then try the next PIN

– This will bypass the ever increasing delay between retries counter measure

– Specifications do not provide solution to this problem

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Off-line encryption key (via Kc)

Extends on from the Kinit recovery attack

– Very similar method as we now know 2 of 3 (i.e.master clock and Kc) seeds
we need, we simply sniff the EN_RAND in addition

E3

COF (Result of Auth)

EN_RAND

Kab (Link-key)

Kc

E0

Clock

BD_ADDRa

Kc

Kcipher

© 2 0 0 4 @ S T A K E , I N C .

New attacks: Impact & Counter Measures

We now have attacks that can

– Allow us to obtain the PIN/LinkKey which in turn allows us to abuse existing bonds on a
device

– Have the inputs required to generate Kc (encryption key) and thus decrypt off-line
capture sessions

Voice phone calls

PIM (Personal Information Manager) synchronization

Unencrypted network traffic

Counter Measures

– Perform initial bonding in non-hostile locations (as specifications say)

– Use long PINs (i.e. 16 bytes)

Use alpha-numeric if at all possible (i.e. PC to Keyboard/Mouse)

– Use Diffie Helman for ultra sensitive deployments (specifications cater for this)

© 2 0 0 4 @ S T A K E , I N C .

Hunting Bluetooth

Theory

Shopping list

Building

Results

© 2 0 0 4 @ S T A K E , I N C .

Hunting Bluetooth: Theory

802.11 operates within 2.4ghz so does Bluetooth

– The @stake theory was: If we use an external 802.11 antenna (i.e. Yagi) it
should work

Bluetooth device already has a external antenna

– The @stake theory was: If we cut that off and replace with pig-tail socket
we should have a working rig

So if we had one of these devices we could get distance
increase

– The @stake theory was: We might seen a increase in distance of maybe 5
fold (we didn’t do any calculations)

© 2 0 0 4 @ S T A K E , I N C .

Hunting Bluetooth: Shopping list

For this recipe you will need:

– 1 broken Lucent Orinoco card (Gold)

– A Bluetooth device with external antenna (preferably Class 1)

– Pigtail

– An external Yagi antenna

– Some spare wire

– Minor soldering skills

© 2 0 0 4 @ S T A K E , I N C .

Hunting Bluetooth: Construction
Connect
Lucent plug to
outer housing

Solder on to
antenna

connector on
PCB

Side view

Top view

© 2 0 0 4 @ S T A K E , I N C .

Hunting Bluetooth: Results
14dbi Antenna

SonyEricsson T68i (Class 3 Device)

Result:
Contactable from 150m’s away
15 fold increase in range

© 2 0 0 4 @ S T A K E , I N C .

RedFang 3.0

Introduction

– First released in June 2003

– Does a brute force attack again Bluetooth addresses performing a name
inquiry to ascertain the existence of a device

– With input from QinetiQ multi-threaded version released in October 2004

– Supports up to 127 concurrent USB devices

– 2.5 also introduced vendor range seeding to speed up the process

Changes in 3.0

– Supports OBEX – Auto ‘BlueStumbling’ on every found device if possible

– State storage (i.e. stop and resume a session)

– Increased number of vendor ranges received from the community

© 2 0 0 4 @ S T A K E , I N C .

RedSnarf 1.0

Introduction

– Our implementation of ‘Bluestumbling’

OBEX PULL’ing / Snarf’ing

– Implements all functionality describe on bluestumbler.org site

Useful for

– Can be combined with BlueFang for Enterprises looking to enforce corporate
policy on Bluetooth enabled devices in certain localities

© 2 0 0 4 @ S T A K E , I N C .

BlueFang 1.0

Introduction

– Performs a constant device inquiry

Similar to TDK’s BlueAlert tool but for Linux

Useful for

– Enterprises looking to enforce corporate policy on Bluetooth enabled
devices in certain localities

i.e. Embed device which scans for active Bluetooth devices at entry points and
within secure locations

© 2 0 0 4 @ S T A K E , I N C .

Miscellaneous research

WidComm Windows Stack

– Link key’s are readable by any users
on the machine!

Belkin Bluetooth Printer Server
& Access Point

– PAN mode has no authentication, no
restrictions

© 2 0 0 4 @ S T A K E , I N C .

Miscellaneous research

Bluetooth Enabled Cell-Phones
– If you compromise the device you can use the GSM AT

command extensions via the Bluetooth modem to:

Obtain all SMS’s

Contact Information

IMEI, Phone number*, Voice mail number*

Setup call forwarding*

Establish GPRS secondary primary and secondary connections

– Via OBEX

IMEI via device file via OBEX

SMS’s via OBEX

* Depends on cellular provider

© 2 0 0 4 @ S T A K E , I N C .

Continued research

What’s left

– Research into how practical MitM (Man in the Middle) attacks are

This is due to mutual authentication being optional

Also being able to provide null’s for rand(s)

– Feasibility of building cheap base band hardware and software
implementations

3,000 GBP and 10,000 GBP development kits and sniffers respectively is out
range for most enterprise security departments

– Reviewing pseudo random sources used in implementations

– Reviewing documented attacks again SAFER+ and see if applicable to
Bluetooth

© 2 0 0 4 @ S T A K E , I N C .

Questions

Thanks for listening, @stake’s Bluetooth research team:

Stephen Kapp
Software Development &

Peer Review

Graham Murphy
Hardware

Ollie Whitehouse
Software Development &

Research

© 2 0 0 4 @ S T A K E , I N C .

Appendices

Bluetooth security resources
– http://www.bluetooth.org/

– http://www.bluejackq.com/

– http://www.bluestumbler.org/

– http://www.shmoo.com/~gdead/dc-11-brucepotter.ppt

– http://www.niksula.cs.hut.fi/~jiitv/bluesec.html

– http://www.atstake.com/research/tools/info_gathering/

– http://www.rsasecurity.com/rsalabs/staff/bios/mjakobsson/bluetooth/bluetooth.pdf

Bluetooth security tools
– BlueSniff

http://bluesniff.shmoo.com/bluesniff-0.1.tar.gz

– PSMScan

http://www.betaversion.net/btdsd/psm_scan.tar.gz

– BTScanner

http://www.pentest.co.uk/cgi-bin/viewcat.cgi?cat=downloads§ion=01_bluetooth

– BlueAlert

http://www.tdksystems.com/software/apps/content.asp?id=4

© 2 0 0 4 @ S T A K E , I N C .

Appendices

Hardware Bluetooth sniffers capable of baseband
– BPA105

http://www.fte.com/

Development kits
– CSR Casira

http://www.csr.com/products/casira.htm

– CSR BlueSuite

http://www.csr.com/products/bluesuite.htm

– CSR BlueLab

http://www.csr.com/products/bluelab.htm

