Security Impacts of Modern Web Development Technologies
Personal Introduction
Hi everyone, my name is David Jorm and I will be talking about the security impacts of modern web development technologies. My background is in both computer security and programming. I have spent the past 5 years in the IT industry as a network admin, network security engineer and web applications developer. I used to code primarily in PHP, but my current job requires me to code in ASP.NET and that takes up most of my time these days. I’ve noticed a huge gap in the body of computer security knowledge and even more so with its application in the field of web applications development. That was my inspiration to deliver last year’s talk on web applications security. Development environments like ASP.NET promised to fix these problems, but in short failed pretty miserably, mostly because of the idiots who write code within them. So this year I’ve decided to give a talk focusing on the security problems with ASP.NET web apps, which are similar to those with other modern environments like JAVA.
Topic Introduction
The web has evolved remarkably since its beginnings. The platforms and programming languages upon which it is built have had to evolve to suit. We have moved from static content through CGI scripts to web applications implementing every capability of desktop applications on top of a protocol originally designed for publishing documents. From a developer’s perspective, this has resulted in a kludge of various technologies hacked together to achieve the required functionality. A typical web application today would employ server side code to generate HTTP responses, HTTP headers to deliver cookies, cookies to handle session tokens, session tokens to link to server side session variables for state maintenance, HTML and style sheets for user interface rendering and JavaScript for client-side code.
Modern web development tools such as Microsoft’s .NET or JAVA with a templating engine attempt to unify this kludge in a coherent manner and expose it to the developer in a highly abstracted model via helper classes and intrinsic objects. The idea, especially in the case of ASP.NET, is to bring the tools and techniques used for desktop applications to the world of web development. While effectively reducing the complexity and learning curve for new web developers, this abstraction distances the developer from the underlying business at hand; what HTTP messages are being exchanged, how are HTTP headers, cookies, session variables, query strings, form elements and so on all interacting to constitute the web application.
This talk aims to illustrate how these new tools, specifically ASP.NET, and their accompanying development methodologies result in significant abstraction of the business logic from the protocols and markup languages being used to implement it. This results in a range of potential textbook security flaws occurring simply because the developer did not understand the context of, or potential inputs to, the unit of code he is authoring. It will also show how many simple old web apps security problems have still not been effectively mitigated in ASP.NET.
<slide>
State of Technology/Uptake 
To set the stage for this and illustrate the magnitude of the problem, I will talk a little about the state of web technology and its uptake. Two major things are happening on the web applications front: new applications are increasingly being built as web apps and existing systems are becoming web-connected. Web services technology is being used to allow separate applications to share both data and business logic over the web, creating a massive distributed computing platform, the potential of which is barely beginning to be realized. With this scale of development occurring and with such critical infrastructure applications as financial systems becoming web-connected, security of web apps is no longer a matter of hijacking cookies and taking over some guy’s forum account.
The tools being used to build new web apps are primarily off-shoots of the most successful desktop and server-side development tools. The two most notable are .NET and J2EE, although others such as JSP, PHP and Perl still get a look in. .NET and J2EE are both completely object oriented environments, with a framework of pre-built classes providing for both common program functions and common web application functions. The code is then executed by a combined web/application server which manages a large portion of the application’s functions automatically. The focus of this talk is the .NET environment, so I will describe it in more detail to illustrate how OO principles and an unhealthy dose of abstraction are combined to bring a tool nearly identical to desktop application development environments to web development.
.NET treats a web application as a cohesive logical entity, not just a collection of autonomous page scripts like PHP or JSP does. Application-wide configuration can be applied by editing the web.config XML file which is a part of the Microsoft provided template for every .NET web app. Settings made here are applied to the web app by the application server component of the environment, so that the programmer does not need to implement them anywhere in his code. These settings include session handling parameters, error handling and authentication mechanisms.
<slide>
DCOM worm as sample of kind of problem

I presume you all remember the DCOM worm ‘MSBlaster’ that went around in mid 2003. The thing that made it so devastating was that everyone was running the vulnerable code. DCOM stands for Distributed Component Object Model and it is a development building block that ships with Windows. Once a vulnerability existed in the building block, everyone with the building block installed or running a system built on it was vulnerable. Although I’m yet to know of any such bugs in ASP.NET, the problem is systemic to component based object oriented systems. The day some kind of flaw comes out in the ASP.NET application server, everyone with a piece of code that calls that part of the application server will be vulnerable.
<slide>
Outline of Accounts Payable Project

To provide examples of the kind of security problems presented by ASP.NET, I want to walk you through the development of an ASP.NET web application I recently worked on. I will first outline the application, then walk you through each week of the 7 week development cycle and the security problems we encountered at each step. I will explain how we mitigated these security problems and provide a simple sample vulnerability and exploit for each category of vulnerability. 

The Accounts Payable web application is part of a larger system to automate the processing of invoices as a business process outsourcing arrangement. A separate component of the system scans and extracts data from invoices, then loads records of the data extract along with references to TIFF images of the scanned invoices into an SQL database visible to the web application. The web application allows CompanyX accounts payable staff to log on, view the invoices for their area of responsibility, assign general ledger codes to components of the invoice amount and approve or reject the invoice. Approved invoices are finally uploaded to CompanyX’s oracle financials system on a daily basis where they are automatically paid. The web application includes facilities for invoice search, image rendering, user management and granular management of permissions denoting which categories of invoice a user can see.
The development methodology used was a combination of RAD and XP. A fairly solid specification was provided, but many technical details and user interface specifics were left out and had to be negotiated with the users of the system throughout development. This meant a constant loop of define, design, construct was in play. 
Development Cycle Walk-through

<slide>
Week 1
This week was concerned entirely with initial problem analysis, design, object modeling and database definition. It was identified that both the web application and separate system tools would make use of a base set of classes. There were then further classes only used by the web application itself. To support this, two class libraries were designed. The first, baselib, to contain all base classes. The second, weblib, to reference baselib as a dependency and contain web app specific classes. 

One of the most significant security problems with this application was correct application of permissions. A user class was created with a member variable of a collection of access right objects. The access right class defined either a logical group of invoices or a system function such as user maintenance to which the associated user had access. 

A critical design issue for web applications is to ensure security is applied by the business logic, not the interface. To support this, it was decided that a user object for the current user would be stored in a common session variable and checked by various other classes within the system for required permissions. This would, hopefully, mean the UI did not have to implement any security itself. 
<slide>
Week 2

Week 2 saw construction of the system’s base classes, construction of SQL tables and the stored procedures used by the class library. The base class library was intended for use by system tools, the weblib and the web application. It represented simple entities within the system such as invoices, invoice allocation lines and event log entries. It was not obvious at this point what all the methods of input for every property and method argument would be, so it was impossible to correctly apply input validation. We had no idea if something was going to come from user input, a config file, or variables internal to the program. Our rapid development methodology did not include making any use case diagrams, which would have revealed this. To counter the problem, we rolled input validation into the database abstraction class, forcing checking of every stored procedure argument and providing a static helper method so pieces of code concatenating strings of SQL could check every variable used for invalid characters. I’m sure most of you are familiar with SQL injection, surely the most common web application vulnerability, but for those who aren’t let me give an example so you can see what it is we had to defend against by validating user input.
<See SQL Injection Sample>
<slide>
Week 3

Week 3 saw the concurrent development of the web library, dependant on the base library built in week 2, and the Staging Agent. The web library contains an associated pair of classes – the queue and the filter – used to construct a view of a subset of invoices. A filter is a data structure class defining which invoices are to be part of the queue and it is passed to a Queue object. The Queue then retrieves the invoice details for each of the invoices meeting the filter’s criteria from the database and creates a FIFO queue of invoice objects representing them. Finally, the Queue object is passed to an ASP.NET server control which renders it as table rows. It was known at the point of developing the queue and filter classes that all inputs to the filter would be from web application UI elements. Most other classes interacted with the database using stored procedures, but the Queue had to do complex conditional branching to add all the WHERE clauses for various Filter elements, so SQL concatenation was used instead. All the UI element inputs were enumerations, so rather than accepting user input verbatim, every user input element was run through a switch/case statement, defining the SQL string to be used for each one. This way, foolproof defence against SQL injection was achieved.

To support the design decision that security must be enforced at the lowest level possible and kept away from the UI, the Queue object finally checks that a user has the required permission to access the subset of invoices he is attempting to retrieve. If he does not, an empty queue is returned.

Although not directly part of the web application and having different security concerns, the Staging Agent has some interesting problems of its own which typify what I am trying to express here. That is, that in these modern development environments, everything is abstracted, built from pre-defined components and very much functionally oriented; security barely gets a look in.

The Staging Agent, one of the system tools previously mentioned, is responsible for downloading a set of CSV files from CompanyX defining open purchase orders and suppliers to which these purchase orders pertain. The Staging Agent then validates these files, checks their referential integrity and loads them into the system’s main database. Microsoft SQL Server Data Transformation Services (DTS) was selected to build the Staging Agent. DTS is glueware for pre-defined data transformation tasks and user defined stored procedures within MS SQL Server. DTS tasks include both FTP transfers and CSV to SQL transformations, so this meant only validation stored procedures and a sequencing of tasks needed to be developed, DTS handled the rest. 
When specifying the FTP transfer task all I had to do was input the FTP server name, the user credentials and identify which files were to be transferred and where they were to be stored locally. That was it. As a developer I had no access to any kind of error or exception handling, leaving the application wide open to all kinds of things. What if the source FTP server is compromised? Someone could put any kind of file of any size there and my system would download it. To make it worse, DTS only supports plaintext FTP, so my user credentials are there for anyone to sniff and use to get CompanyX’s financial data!
<slide>
Week 4

In week 4 we began developing the web application itself. The first components to be built were user login handling, main menu rendering and invoice queue views. 
ASP.NET provides a useful feature called Forms Authentication, which was employed to handle access control for this application. The developer defines a login page and activates Forms Authentication in the application’s web.config file. The login page must call the static FormsAuthentication.RedirectFromLoginPage() method for each user it successfully authenticates. Forms Authentication then applies access control to all resources in the application. If a request is made, Forms Authentication ensures a suitable Session ID token representing an authenticated user is provided, or else it redirects the request to the login page defined. On its own, two security issues emerge from this: user credentials being passed clear-text and the possibility of cookie replay attacks to hijack sessions. Both of these problems are effectively mitigated by the use of SSL throughout the application. In the case of this application we used SSL only for the login page to encrypt user credentials, then once the Session ID cookie has been issued, the user is redirected to clear-text http. This means replay attacks are a known vulnerability of the app, but because of the performance overhead of application-wide SSL for hundreds of concurrent users we had little choice. Let me explain exactly what I mean by a cookie replay attack. I’ll begin by explaining how ASP.NET Session variables work and how this ties into Forms Authentication.

When a user first makes a request to a session enabled ASP.NET application, the server sets a cookie called ASP.NET_SessionId with a value of a pseudo unique string called a session token. This cookie is then attached to all subsequent HTTP requests to the application. The programmer can add, remove and query elements of the Session collection in his code, to hold things like user details or shopping cart data. The ASP.NET application server stores session data in a server side database, associating data elements to a particular session token. When a request is made to execute a page which accesses elements of the Session collection, an ASP.NET_SessionId cookie is required and only data linked to the session token provided will be available. When Forms Authentication is used, another cookie with a name defined by the name of the web application holds a pseudo unique string similar to a session token. This token is issued to a user after he successfully authenticates through Forms Authentication. So to prove he is authenticated and identify which session holds his session variables, the client attaches both of these cookies to the header of every request he makes to the web app.

It follows that by intercepting a user’s session token, an attacker could attach it to his own requests and effectively hijack their session, assuming their identify within the application. This attack is mitigated fairly well by using SSL because it makes intercepting the session token very difficult. It is, however, still vulnerable to some forms of Cross Site Scripting attacks. I will explain session hijacking in a moment when I demonstrate using Cross Site Scripting to intercept the cookie.
<slide>

Once past the login mechanism, users see the main menu. The main menu is the home page for users of the system and provides links to each queue view or function within the system a user can access. The links are rendered dynamically based on the permissions the current user holds. This permissions mechanism is separate to Forms Authentication. After a user successfully logs in to Forms Authentication, the application stores an instance of a user object representing the user and their associated permissions in a session variable. This is what dictates the permissions they hold.
Each queue view is a listing of invoices at a given stage of processing within the system. Only invoices flagged as being at that stage are visible, but for each queue view a different set of filters may be applied. For example, invoice date, supplier, organizational unit the invoice is to and so on can be input as a filter. The set of fields which can be used to filter is different for each queue view. As I mentioned, in Week 3 we used switch/case statements for these filter values to protect against SQL injection, but what of cross site scripting (XSS)? Whenever user input is put into HTML printed by the web application verbatim, an XSS vulnerability exists. The .NET framework can be given the validateRequest configuration directive and automatically check input validity and prevent _most_ XSS attacks, but validateRequest is too restrictive for something like a search engine. To allow a user to enter special characters and tags, you must set the validateRequest parameter to false in the Page directive. Let me give you an example of this and how a user can effect cookie theft using XSS:

<INSERT XSS/COOKIE THEFT EXAMPLE>
In the case of the Queue Views, validateRequest was left on, so there was no real problem, but there is nothing like a healthy dose of paranoia. To be sure, we relied on the fact every input was an enumeration. Each enumeration had a system table linking each string to an ID number. For example, the string for a supplier or an organizational unit linked to a supplier ID or an org unit ID. When collecting input from the user, we only accepted this ID number. When printing user input back out on refreshed views of the queue, we looked the ID numbers given up against the appropriate table and printed out their corresponding string, using a blank string if nothing was found. This prevents user input from ever being printed verbatim. Another, more common, method of defending against XSS without using validateRequest is to strip special characters required to write javascript code from user input before printing it back out without restricting input too heavily.
Finally, remember how in week 3 we rolled permission checking into the queue object? This means that now, at the level of the UI, no permission checks need to be performed. If a user attempts to access a queue view he does not have permission for, he will simply get an empty queue and be powerless to abuse the system.
<slide>
Week 5

Week 5 saw the bulk of the web application built, including user management and various popup windows for use within the queue views and the screens where users could finally see an image of an invoice – the invoice handlers. 
First, let me speak about the popups, as these raised a very interesting security issue which I can’t find any other references to. The popups are used to select a value using an autonomous popup window. The user clicks on the “Select Supplier” button, for example, on the calling page and a popup window appears. The popup window allows the user to search for the supplier or browse suppliers alphabetically. Once one is clicked, the result is written back to a form element on the calling page. In some circumstances, this should also trigger a postback event – that is, a form being submitted by an ASP.NET control event being raised – on the calling page. For example, the “Hold” popup window allows a user to select a reason they wish to hold an invoice, then once they select one the Hold action needs to be triggered on the calling page. To implement this, we created both a normal image button and an ASP.NET image button server control with its visible property set to false on the calling pages. The normal image button’s onClick event opens the popup window. Javascript code in the popup window writes the selected value back to a form element on the caller then uses the __doPostBack() JavaScript function supplied with ASP.NET to raise the onClick postback event on the invisible server control. This worked flawlessly and was implemented across the board for all popups.

But hold on, the server control’s visible property was set to false! This means not a single scrap of HTML is rendered to represent the control and from the developer’s perspective the user does not have access to it. Remember how I was saying ASP.NET tries to bring VB style desktop application development techniques to the web? Well, think like a VB programmer. You have UI elements, you set their visible property to false and no more HTML is rendered for them. Wouldn’t this be a good way to dynamically render a menu system, just like we had done in week 4? It turns out, for our example, the menu only provides links to other pages which implement their own permission checking, but what about  if they actually implemented an action? Let me give you an example of a simple menu system which does this and hides elements from users who should not have access to them by setting the visible property to false on server controls:

<INSERT POSTBACK ON VISIBLE=FALSE EXAMPLE>

The popup windows themselves also created a potential problem with SQL injection. All other areas, with the aforementioned exception of the queues, use stored procedures to interact with the database and have their inputs automatically checked. The popup windows were – as is the nature of the XP methodology – specified on the run as the needs of the user became apparent. We had to quickly implement alphabetic browsing, so that when a user wanted to browse all suppliers started with the letter A we wound up with an SQL statement like:
SELECT * FROM Suppliers WHERE SUBSTRING(SupplierName, 1, 1) = ‘A’

This is of course vulnerable to various forms of SQL injection, so we had to make sure the user input variable for the letter to browse by was sanity-checked using the static helper method we wrote in week 2. This was a relatively minor thing, but I’m pointing it out because it shows how the on-the-fly specification used by rapid development methodologies can disrupt designed-in security mechanisms. Had this been clearly specified from the outset, we would have used a stored procedure and the problem would not have arisen.

<slide>
Week 6

During week 6 we built the invoice handlers; pages where users can view an image of an invoice and allocate portions of the total amount to various general ledger codes. The primary security concern in this phase of development was the integration of ImageShark, a web based image rendering engine made by ACD Systems. 
ImageShark is an ISAPI DLL which accepts HTTP GET arguments specifying an image and some rendering conditions such as which page of a multi-page image to display, scale, rotation, color blending and so on. It can process many image types, including TIFF which is the standard for recognition engines and was required by the invoice data capture software. It applies the rendering conditions to the source image and returns a rendered JPEG image, a format easily understood by web browsers. ImageShark accesses images as HTTP resources, not using the web server’s file system, so some serious security concerns arise. It requires read and browse (don’t ask me why!) access to the HTTP directories containing its images and can not handle providing HTTP authentication credentials. In a typical image library situation, these images are used by systems other than the web application and are stored on a central drive, mapped by the web server and exposed as a HTTP resource. This was the case with the accounts payable system. The solution lies in the fact that ImageShark sits on the same web server as the TIFF images it processes in most configurations, including the accounts payable system. By setting an IP address filter on IIS to restrict access to the image library directories to only the web server’s loopback and internal Ethernet IP addresses, we were able to prevent outside users from circumventing the application’s authentication mechanism and simply browsing directories of TIFF images. ImageShark is also incapable of authenticating users who access it and make requests for converted TIFFs.

Other systems I have worked on have used Image Shark and one of them, built by a third party who’s name I won’t haul through the mud just yet, failed to apply even this basic security. TIFFs of scanned confidential classified government documents were left unprotected for 3 years for everyone on a government department’s WAN to browse, authentication free. I would demonstrate this problem for you, but I don’t have access to a copy of ImageShark for this talk and I think it is pretty self-explanatory.
<slide>

Week 6 also saw initial user acceptance testing from the project manager and more extensive testing by the developers. We were able to cause many exceptions and it became obvious that no matter how good our error handling, exceptions were going to be thrown now and then in the production environment and we would have to render them in a coherent manner to the users. Let me first briefly explain .NET exception handling. It is, in fine .NET tradition, a complete rip off of JAVA’s exception handling. Exceptions are thrown as objects of type exception or a class type which inherits from exception. Try/catch/finally blocks are used to provide structured exception handling. The exception class exposes two key properties: Message and StackTrace. Message is a short textual description of the exception and StackTrace is a long string showing where the exception occurred, then unwinding the call stack and showing the class and line where each call occurred until the stack is empty. Both of these properties often expose sensitive information and actual chunks of code.
By default, ASP.NET simply prints out a generic “An exception has occurred” message, but this is a pain for development purposes and debugging. You can edit the web.config file for your application to enable more friendly messages which print the Message and StackTrace properties in a nice HTML page. This is perfect for development, but what about production? You don’t want to expose that much information to the user. You may also want to render the exceptions to fit in with the look and feel of your application. This can be achieved by editing global.asax you can define your own custom exception handling. I won’t go into the details of this now, as it has more to do with ASP.NET programming than security. Let me give you an example of the kind of sensitive information which can be revealed by exception objects:
<INSERT EXAMPLE OF COMPROMISING STACK TRACE/MESSAGE INFO>

For the accounts payable system, we ended up simply making a custom page which rendered the Message property to the user and provided a “Technical Information” button which used DHTML to reveal a hidden <SPAN> tag of text showing the StackTrace property, formatted with the look and feel of our site. This was against my advice for the best security, but I take a Pontius Pilate approach to these things. The best solution I have thought of so far is to pass error types through a switch/case statement and provide a friendly text message for each one, with a default message for unknown types. This, along with a unique sequential “Error ID” can be rendered to the user. The exception.Message and exception.StackTrace properties can then be logged on the server side, attached to the Error ID. This way, a user can contact tech support with their Error ID, tech support can see the full details of the exception and the compromising exception information is never shown to the user.
<slide>
Week 7

The development cycle was supposed to be only 6 weeks long and the vast majority of development was completed in time. We did run a little over schedule, but nothing with security implications worth mentioning arose. Towards the end of Week 7 we began more extensive user acceptance testing. One interesting issue came out of this. Our input validation method, used to sanity check both SQL string inputs and stored procedure arguments, applied the following regular expression:

[a-zA-Z0-9]

Some stored procedure inputs required punctuation from the user, so an exception was caused when this occurred. Stored procedure arguments are interpreted as string literals after the SQL operators in the stored procedure code have been parsed, so validation is not strictly required to prevent SQL injection, we were just being paranoid. We thought long and hard about potential ways to strip or escape the input without interfering with punctuation, but no obvious solutions came up. Simply escaping the single quote ‘ character was the best idea, but would not help with numeric input. In the end we simply removed sanity checking of stored procedure arguments. In testing this, we found we were still unable to achieve SQL injection. The old regex was left in place for checking inputs used as components of SQL strings, as there were no circumstances in the accounts payable application where we needed to allow non alphanumeric input.
<slide>

Conclusion
So, what have I learned from this project and what am I trying to convey here? In short, .NET and the generation of object oriented application server based development environments of which it is part, abstract everything. As a result of this abstraction, the developer is all too often left ignorant of the mechanisms which underlie his code. Only by having experience with developing at a lower level, understanding the protocols and understanding web applications security to at least a basic level can a developer hope to mitigate simple security bugs in his ASP.NET web apps. There are also a range of age-old web apps security holes like SQL injection and compromising error messages that, despite all its efforts at good security, ASP.NET has failed to address.
Glueware tools like DTS only make matters worse, because once a security flaw or lack of security functionality exists in the system, the developer is powerless to overcome the problem. While these kind of tools reduce development times dramatically, the cost to security could negate that benefit in some cases.

Finally, I would like to thank Jody Melbourne for his assistance with this talk.

