

About Me

- Ryan Junee BE (Hons I) BCom
- Research Engineer @ Sensory Networks
- Graduate of Sydney University
- Teach a variety of subjects at Sydney Uni
 - currently head tutor of ELEC5610 Computer and Network Security

ryan@junee.org http://ryan.junee.org

About Me

- 2002 Thesis: "Power Analysis Attacks :: A Weakness in Cryptographic Smart Cards and Microprocessors"
- Successfully recovered DES secret key using Differential Power Analysis (DPA)
- Featured on the front page of Australian IT

About Smart Cards

- Growing use in a wide range of industries worldwide:
 - SMARTICS identity card for citizens of Hong Kong. Stores ID & 3rd party info.
 - Drivers licenses in the Philippines record name, address, fingerprint, photo, offences...
 - Transport ticketing in Washington (1/3 of WMATA Metrorail riders use SmarTrip cards)
 - Pay television, health care, ...

About Smart Cards

- Recent headlines:
 - "NSW announces smart card fare system"
 - "First Gas Pumps Accept MasterCard® PayPass"
 - "Mexico Moves To Smart Tax Payment System"
 - "Terrorist attacks spark military smart cards"
 - "MasterCard Records 65 Percent Growth in Smart Card Issuance in Asia/Pacific"
- Has anyone considered the risks??

About Smart Cards

- Smart cards are gaining popularity in applications that require high security and/or store sensitive information.
- Traditionally seen as secure and tamper resistant (especially compared to magnetic stripe cards).
- We are not there yet...

Timing Attacks

- Cryptosystems can take different amounts of time to process different inputs.
 - Performance optimisations in software
 - Branching/conditional statements
 - Caching in RAM
 - Variable length instructions (multiply, divide)
- Simply take accurate timing measurements with various input data to deduce internal workings.

Timing Attacks

- Simple example Naive password checking function.
- Interesting paradox: As computers become faster and networks have less latency, timing measurements become more accurate!
- Future research: a timing attack on SSH exploiting keystroke timing statistics?

Timing Attacks

- Countermeasures
 - Make all operations run in same amount of time
 - · Can't design platform-independent algorithms
 - All operations take as long as slowest one
 - Add random delays
 - · Can take more samples to remove randomness
 - Blind signature techniques
 - · Algorithm specific

Fault Analysis

- Single innocent faults can have large security implications.
- Faults can be induced.
- Simple example: bit controls ciphertext or plaintext output.
 - Flip bit with power surge, radiation, laser etc
- Engineering criteria (e.g. FIPS140-1) generally prevent such simple attacks.

Fault Analysis

- Differential Fault Analysis
 - Biham, Shamir 1997
- Intrusive Fault Analysis
- E.g. damaging registers in the last round of a DES operation can reveal S-box input and hence round key.

Fault Analysis

- Countermeasures
 - Verify correctness of output before transmitting it to outside world
 - Can increase work by a factor of 2
 - · Fault could also occur in verification
 - Make devices tamper resistant (strong shielding, detect supply voltages and clock speeds)
 - · Costly, increase device footprint

Power Analysis

- Logic gates made from transistors draw current when switching states
- Power consumed depends on:
 - opcode, operand data, contents of registers, buses and memory, previous instructions (pipeline)
- Measure current by placing a resistor in series with supply or ground pin

Power Analysis

- Simple Power Analysis
 - Can observe macro characteristics of underlying algorithm (loops, conditionals etc)
- Differential Power Analysis
 - Use statistical techniques to reveal much smaller power variations
- Inferential Power Analysis
 - Profile hardware. Subsequent attacks require as little as one trace!
- More detail on SPA/DPA in Part II

Power Analysis

- Countermeasures
 - Don't use secret values in conditionals/loops
 - · May mean code has sub-optimal performance
 - Ensure little variation in power consumption between instructions
 - · Requires consideration of low level logic design
 - More discussed at the end

EM Emissions

- Large body of classified literature.
 Recently being realised in public domain research
- Direct emanations caused by current flows in circuit
- Unintentional emanations caused by electrical/electromagnetic coupling between components in close proximity

EM Emissions

- 2002 paper from IBM shows different signals present in different parts of spectrum
- Some can be detected with antennas from a distance. Best results if chip is decapsulated from packaging
- Contain more information than power leakage, resistant to countermeasures.
- · Watch this space!

EM Emissions

- Countermeasures
 - Redesign circuits to prevent unintentional emissions
 - Costly
 - Shielding
 - · Costly, increase device footprint
 - Introduce EM noise
 - · Can be averaged out

Differential Power Analysis

- Perform approx 400 DES encryptions with arbitrary plaintext. Record the resulting power trace and ciphertext output.
- Brute force a particular 6-bit subkey from DES round 16
 - For each guess, calculate the value of a particular bit in L15 corresponding to the subkey (there are 4 such bits)
 - Partition the traces into two sets, one where the 'select bit' is 0, one where it is 1.

Differential Power Analysis

- Calculate the average power trace for each set, then subtract to <u>form differential trace</u>.
- Assume correlation between power consumed and value of select bit
 - (it is manipulated somewhere in the power trace)
- If key guess was correct => peaks in the differential trace
- If not we have made a random partition => differential trace should approach zero.

Differential Power Analysis

- The low down:
 - 400 traces acquired (approx. 22 hours)
 - 1.6 hours computation (Celeron 400MHz)
 - DES key cracked!
 - Brute force key search on same computer would take 57 thousand years!
- Code is available on my web site (you will need access to a CRO etc)

Improving the Attack

- Improvement 1 Reduce acquisition time
 - Bottleneck is 38400 baud serial transfer
 - Use ethernet or GPIB
 - Lower sampling rate (currently 50/cycle)
- Improvement 2 Reduce computation time
 - Use faster CPU
 - Parallel computation
- Improvement 3 Reduce number of traces required

Future work

- As observed, uncanny accuracy in power traces
- Power trace disassembler:
 - Profile all instructions
 - Use statistical methods or AI to disassemble the execution trace of an algorithm by observing power consumption
 - Reverse engineering tool?

Power Analysis Countermeasures

- Countermeasures
 - Reducing power variations (shielding, balancing)
 - Randomness (power, execution, timing) + counters on card
 - Algorithm redesign (non-linear key update, blinding)
 - Hardware redesign (decouple power supply, gatelevel design)
- 2002: Kocher released automated DPA cracker.
 Sell to approved researchers/manufacturers
- Suspect not many cards employ adequate countermeasures

